THOUSANDS OF FREE BLOGGER TEMPLATES

Selasa, 24 Agustus 2010

INSTALASI WAN : Coaxial cable Loss

Nama : Fajar Dwi Jayanto
Kelas : 3 TKJ A


Kabel koaksial atau lebih di kenal dengan transmission line, adalah sebuah kabel listrik dengan konduktor dalam dikelilingi oleh tubular, lapisan isolasi fleksibel, dikelilingi oleh perisai tabung. Istilah koaksial konduktor berasal dari dalam dan luar perisai berbagi sumbu geometris yang sama. Kabel koaksial diciptakan oleh insinyur Inggris dan matematika Oliver Heaviside , yang pertama kali dipatenkan pada tahun 1880 desain.


Kabel koaksial ini, sangat popular pada era tahun 1940 atau masa masa perang dunia ke II adalah jenis open wire, yaitu dua kabel terbuka yang secara sejajar dengan jarak tertentu mengalirkan RF (Radio Frekwensi) menuju feed point antenna. Open Wire cukup baik sebagai transmission line, namun Open Wire di rentang dengan jarak kedua kabel sejajar dan tidak boleh berubah, kondisi penempatan harus jauh dari metal dan tidak dapat fleksibel seperti Coax terbungkus rapi seperti transmission line masa kini, namun Open Wire akan menimbulkan masalah jika dipergunakan untuk antenna jenis pengarah, Antenna harus selalu dapat berputar sesuai arah yang diinginkan pengguna, dalam hal ini open wire kurang dapat fleksibel dan agak rumit untuk memakainya.

Kabel Coax (Transmission Line) jika terlalu panjang bisa menyebabkan losses Power energi yang di pancarkan ke antenna, Radio Frekwensi yang disalurkan terhambat, sebaiknya lebih teliti dalam memilih type coax terutama merk dan pastikan jenis material kabel (kandungan metal yang dipergunakan), diameter coax (Jarak Inner dan Outer coax serta coaxial Jacket), panjang Coax yang dipergunakan, Jenis Connector, Korosi yang disebabkan cuaca dan lainnya.

Losses Power akan berkurang jika Transmitter, kabel dan antenna match impedansi nya, Loses akan bertambah jika SWR lebih besar dari 1:1. Setiap energi yang disalurkan melalui Coax dari transmitter ke antenna (Load) dan kembali ke Transmitter dinamakan Reflected Power dan selalu mengakibatkan Losses pada Power yang di transmisikan, efeknya arus gelombang balik (SWR) akan membesar nilai perbandingan current, voltage dan frekwensi menghambat aliran gelombang dari transmitter untuk dilepaskan ke antenna.
Kabel Coaxial digunakan sebagai jalur transmisi untuk frekuensi radio sinyal, dalam aplikasi seperti menghubungkan radio pemancar dan penerima dengan antena mereka, jaringan komputer ( internet ) koneksi, dan mendistribusikan sinyal televisi kabel. Satu keuntungan nya adalah bahwa dalam sebuah kabel coaxial ideal medan elektromagnetik membawa sinyal hanya ada di ruang antara bagian dalam dan luar konduktor . Hal ini memungkinkan kabel koaksial berjalan untuk diinstal di samping benda logam seperti talang tanpa rugi daya yang terjadi dalam jalur transmisi lain, dan memberikan perlindungan dari sinyal dari eksternal gangguan elektromagnetik .

Kabel Coaxial berbeda dari yang lain yaitu, digunakan untuk membawa sinyal frekuensi yang lebih rendah seperti sinyal audio , dalam dimensi kabel dikendalikan untuk menghasilkan konduktor repeatable dan dapat diprediksi jarak diperlukan untuk berfungsi secara efisien sebagai radio frekuensi saluran transmisi

Cara kerja

Kabel Coaxial berbeda dari kabel lain karena dirancang untuk membawa frekuensi radio saat iniIni memiliki frekuensi yang lebih tinggi dari 50 atau 60 Hz digunakan dalam listrik (tenaga listrik) kabel, membalikkan arah jutaan milyaran kali per detik. Seperti jenis radio saluran transmisi , hal ini membutuhkan konstruksi yang khusus untuk mencegah kerugian daya.
Jika sebuah kabel biasa digunakan untuk membawa arus frekuensi tinggi, kawat bertindak sebagai antena , dan arus frekuensi tinggi memancar dari kawat gelombang radio , menyebabkan rugi daya. Untuk mencegah hal ini, dalam satu kabel koaksial konduktor dibentuk ke dalam tabung dan membungkus konduktor lainnya. Ini membatasi gelombang radio dari konduktor pusat ke ruang dalam tabungUntuk mencegah konduktor luar, atau perisai, dari radiasi, sedang dihubungkan dengan tanah listrik , menyimpannya pada potensial konstan.
Dimensi dan jarak dari konduktor harus seragam. Setiap perubahan tiba-tiba dalam jarak dua konduktor sepanjang kabel cenderung untuk mencerminkan kekuatan frekuensi radio kembali ke sumber, menyebabkan kondisi yang disebut gelombang berdiri . Ini bertindak sebagai hambatan, mengurangi jumlah tenaga mencapai tujuan akhir kabel. Untuk terus perisai pada jarak yang seragam dari konduktor pusat, ruang antara kedua diisi dengan plastik semirigid dielektrik . Produsen menentukan minimum sebuah tikungan radius untuk mencegah Kinks yang akan menyebabkan pantulan. Konektor digunakan dengan membujuk dirancang untuk terus jarak yang benar melalui tubuh konektor.
Setiap jenis kabel koaksial memiliki karakteristik impedansi tergantung pada dimensi dan bahan yang digunakan, yang adalah rasio tegangan terhadap arus pada kabel. Untuk mencegah refleksi pada akhir tujuan kabel dari menyebabkan gelombang berdiri, peralatan kabel terpasang harus menyajikan impedansi sama dengan impedansi karakteristik (disebut 'cocok'). Jadi peralatan yang "muncul" elektrik mirip dengan kelanjutan dari kabel, mencegah refleksi. Nilai-nilai umum impedansi karakteristik untuk kabel koaksial adalah 50 dan 75 ohm.

Sinyal Propagasi

Buka kawat saluran transmisi memiliki properti bahwa gelombang elektromagnetik merambat ke bawah garis memanjang ke dalam ruang di sekitar kawat sejajar. Garis-garis ini memiliki berat yang rendah, tetapi juga memiliki karakteristik yang tidak diinginkan. Mereka tidak dapat menjadi bengkok, memutar atau berbentuk tanpa mengubah mereka impedansi karakteristik , menyebabkan refleksi dari sinyal kembali ke sumbernya. Mereka juga tidak dapat dijalankan bersama atau melekat pada apa pun konduktif , sebagai bidang diperpanjang akan mendorong arus di dekat konduktor yang tidak diinginkan menyebabkan radiasi dan detuning baris. garis Coaxial memecahkan masalah ini dengan membatasi gelombang elektromagnetik ke daerah bagian dalam kabel, antara pusat dan konduktor perisai. Transmisi energi sesuai benar-benar terjadi melalui dielektrik di dalam kabel antara konduktor. Coaxial baris sehingga dapat menjadi bengkok dan agak bengkok tanpa efek negatif, dan mereka dapat terikat untuk mendukung konduktif tanpa inducing arus yang tidak diinginkan di dalamnya. Dalam aplikasi radio frekuensi sampai beberapa gigahertz , gelombang menyebarkan terutama di magnetik listrik melintang (TEM) modus , yang berarti bahwa medan listrik dan magnetik yang keduanya tegak lurus terhadap arah propagasi. Namun, di atas tertentu frekuensi cutoff , listrik transversal (TE) dan / atau transverse magnetic (TM) mode juga dapat menyebarkan, seperti yang mereka lakukan dalam pandu gelombang Hal ini biasanya tidak diinginkan untuk mengirimkan sinyal di atas frekuensi cutoff, karena dapat menyebabkan beberapa mode dengan berbeda kecepatan fase untuk menyebarkan, mengganggu satu sama lain. Diameter luar kira-kira berbanding terbalik dengan frekuensi cutoff . Sebuah propagasi gelombang permukaan-modus yang tidak melibatkan atau memerlukan perisai luar tetapi hanya satu konduktor pusat juga ada di membujuk tetapi mode ini secara efektif ditekan dalam membujuk geometri konvensional dan impedansi umum. garis-garis medan listrik untuk TM mode memiliki komponen longitudinal dan membutuhkan panjang garis setengah panjang gelombang atau lebih.

Konektor


Konektor Coaxial dirancang untuk mempertahankan bentuk coaxial di koneksi dan memiliki impedansi yang sama baik didefinisikan sebagai kabel terpasang. Konektor sering disepuh dengan logam konduktivitas tinggi seperti perak atau emas. Karena efek kulit, sinyal RF hanya dilakukan oleh plating dan tidak menembus tubuh konektor. Meskipun perak mengoksidasi dengan cepat, oksida perak yang dihasilkan masih konduktif. Meskipun hal ini mungkin menimbulkan masalah kosmetik, tidak menurunkan kinerja.

  • Contoh Coax Losses

Untuk 3 jenis coax yang berlainan type, serta diameter yang berbeda dengan panjang 250 Feet Perbandingan losses tiga jenis coax dan penggunaan frekwensi type diameter lebih kecil seperti RG58a, Medium diameter RG8a, dan + inch OD-50 Q ukuran besar untuk band VHF dan HF. Dapat dilihat pada tabel jika menggunakan coax dengan type diameter lebih kecil akan menimbulkan losses yang besar khususnya pada band VHF, meskipun demikian masih memungkinkan untuk dipergunakan pada frekwensi 3.5 MHZ HF band.3.5 MHz 3.5 MHz 28 MHz 28 MHz 146MHz 146 MHz Matched- Loss, 6:1 Matched- Loss, 6:1 Matched- Loss 6: 1 Xmsn Line Line Loss, dB SWR, dB Line Loss, dB SWR, dB Line Loss, dB SWR, dB RG-58A 1.9 4.0 6.3 9.3 16.5 19.6 RG-8A 0.9 2.2 3.0 5.4 7.8 10.8 3/4" 50- Q Hardline 0.2 0.5 0.7 1.8 2.1 4.2

Fungsi kabel koasial

1. Kabel Coax Sebagai Transformer Impedance
Kabel coax juga dapat dipergunakan untuk penyesuai impedance dari transmitter ke Load Impedance (Antenna) secara konsisten resistans dan reaktans pada ujung kabel yang di transformasi dan disesuaikan input impedance dari transmitter ke antenna seperti Balluns 1:1; 1:4 bisa dibuat dari material coax secara mudah, dengan cara menyesuaikan panjang gelombang, panjang fisik material coax dan karakteristik impedance coax.12 --34-

2. Kabel Coax Digunakan Sebagai Antenna
Beberapa jenis coax dapat dipergunakan sebagai antenna terutama untuk HF/VHF/UHF band, Jenis antenna bazooka adalah satu jenis antenna yang banyak menggunakan material dari kabel coax, atau jenis lain adalah collinear vertical antenna seperti beberapa skema antenna berikut:12



Jumat, 06 Agustus 2010

ADMIN SERVER : SECURITY DNS

SECURITY DNS

Pada tingkat mikro, layanan DNS sangat penting untuk pengoperasian Internet. Pada mikro atau ditingkat lokal, layanan DNS sangat penting bagi operasi suatu perusahaan atau dalam pencarian website tercinta. Dalam semua kasus, investasi yang tepat dalam keamanan harus dilakukan untuk memastikan efektivitas dan keamanan dari sistem DNS. DNS yang bersifat publik system. Artikel ini memperkenalkan keamanan DNS, dengan tujuan memungkinkan pembaca untuk memilih teknik yang sesuai untuk tingkatan yang dianggap merupakan ancaman. Sayangnya, istilah DNSSEC (DNS Security) memiliki reputasi buruk karena kompleksitas yang dirasakan, dan sering digunakan untuk menutupi seluruh baigan keamanan DNS. Ada banyak aspek DNS keamanan, mulai dari yang relatif sederhana untuk mengimplementasikan untuk yang lebih kompleks. artikel ini membagi keamanan menjadi empat bagian:

1. Administrative Security: bagian dari artikel ini yang mencakup penggunaan hak akses file, konfigurasi server, konfigurasi BIND, dan sandboxes (atau chroot jail’s).

2. Transfer Zone: Kecuali sistem konfigurasi multimaster yang sedang digunakan, transfer Zone sangat penting untuk beroprasi secara Normal.

3. Dynamic Updates: selalu update mengekspos file master zone dari kemungkinan terjadi korup, kehancuran, atau keracunan.

4. Zona integrity: sangat penting, bahwa zona data yang digunakan oleh salah satu DNS lain atau end User(klient) benar (yaitu, tanggapan query belum dirusak dan kembali data hanya berasal dari pemilik zona), maka DNSSEC diperlukan.

Setiap alur data merupakan sumber potensial ancaman.

DNS Aliran Data Normal

Setiap aliran data -yaitu, setiap nomor baris dalam Gambar merupakan sumber potensi ancaman.

Dalam Tabel mendefinisikan hasil potensi ancaman pada setiap titik dan kemungkinnan solusinya.


Klasifikasi Keamanan

1. Local threats

2. Server-Server

3. Server-Client

4. Client-Clinet

Deny All, Allow Selectively

Sewaktu mengijinkan Oprasi, misal dalam notifikasi atau Zone Transfer, itu mungkin menjadi berharga dalam melarang serentak oprasi dan meng-Enable kan dengan selektif

options {

....

allow-transfer {none;}; // no transfer by default

....

};

....

zone "example.com in{

....

allow-transfer {10.0.1.2;}; // this host only

....

};

Melihat apakah Proses Bind telah beroprasi

# PS aux |grep named

Mensetting Bind untuk beroprasi secara Runtime

# groupadd -r named

# useradd -c 'Bind daemon' -d /var/named -s /sbin/nologin -g named -r named


Untuk membuat dan mengatur hak akses serta menulis file run time (log dan PID), gunakan berikut
perintah:

# cd /var/log

# mkdir named

# touch named/example.log

# chown named:dnsadmin named/*

# chmod 0660 named/*

# cd /var/run

# mkdir named

# touch named/named.pid

# chown named:named/*

# chmod 0664 named/*

Set hak akses pada setiap direktori kunci, seperti ditunjukkan pada berikut

# cd /var/named

# chown named:named keys/*

# chmod 04000 keys/*

Set hak akses pada setiap file zona pribadi

# cd /var/named

# chown -R dnsadmin:root master/private/*

# chmod -R 0660 master/private/*

Set hak akses pada setiap file zona DDNS:

# cd /var/named

# chown -R named:root masters/ddns/*

# chmod -R 0660 masters/ddns

Set hak akses pada tampilan-private menyertakan file:

#cd /var/named

#chown -R dnsadmin:root views/*

#chmod -R 0660 views/*

DNSSEC

DNSSEC mendefinisikan sebuah proses dimana name server dikonfigurasi secara suitably configured yang dapat memverifikasi dan integritas hasil query dari sebuah signed zone.

DNSKEY, dan Next Secure (NSEC) RRs, digunakan oleh DNSSEC. Untuk mengaktifkan security-aware, menerima name server untuk melakukan hal berikut :

* Authentication bahwa data yang diterima hanya bisa berasal dari zona yang diminta.
* Verifikasi integritas data. Data yang diterima di server nama query adalah data yang dikirim dari tanya bernama server. Isi data yang dilindungi, bukan saluran komunikasi.
* Verifikasi bahwa jika sebuah respons negatif (NXDOMAIN) diterima untuk permintaan tuan rumah, yang menargetkan catatan tidak ada.

Island of Security


Chains of Trust


Implementasi DNSSEC

Untuk mengilustrasikan proses pelaksanaan DNSSEC, prosedur berikut ini akan dijelaskan dengan contoh:

* Mengamankan example.com zona menggunakan ZSK terpisah dan KSK
* Membuat terpercaya jangkar untuk example.com di server nama di ns1.example.net
* Mengamankan zona sub.example.comMenambahkan RR DS untuk sub.example.com ke example.com untuk menciptakan zona aman delegasi dalam rantai kepercayaan
* Rolling yang ZSK dan KSK untuk example.com

Mengamankan Zona example.com

Selasa, 03 Agustus 2010

Modulasi Digital & Propagasi Gelombang

SMKN 1 CIMAHI

PROPAGASI GELOMBANG

& MODULASI DIGITAL

NAMA : FAJAR DWI JAYANTO

KELAS : 3 TKJ A

INSTALASI WAN




Modulasi Digital

Modulasi digital merupakan proses penumpangan sinyal digital (bit stream) ke dalam sinyal carrier. Modulasi digital sebetulnya adalah proses mengubah-ubah karakteristik dan sifat gelombang pembawa (carrier) sedemikian rupa sehingga bentuk hasilnya (modulated carrier) memeiliki ciri-ciri dari bit-bit (0 atau 1) yang dikandungnya. Berarti dengan mengamati modulated carriernya, kita bisa mengetahui urutan bitnya disertai clock (timing, sinkronisasi).
Melalui proses modulasi digital sinyal-sinyal digital setiap tingkatan dapat dikirim ke penerima dengan baik. Untuk pengiriman ini dapat digunakan media transmisi fisik (logam atau optik) atau non fisik (gelombang-gelombang radio).
Pada dasarnya dikenal 3 prinsip atau sistem modulasi digital yaitu: ASK, FSK, dan PSK
1. Amplitude Shift Keying
Amplitude Shift Keying (ASK) atau pengiriman sinyal berdasarkan pergeseran amplitude, merupakan suatu metoda modulasi dengan mengubah-ubah amplitude. Dalam proses modulasi ini kemunculan frekuensi gelombang pembawa tergantung pada ada atau tidak adanya sinyal informasi digital.
Keuntungan yang diperoleh dari metode ini adalah bit per baud (kecepatan digital) lebih besar. Sedangkan kesulitannya adalah dalam menentukan level acuan yang dimilikinya, yakni setiap sinyal yang diteruskan melalui saluran transmisi jarak jauh selalu dipengaruhi oleh redaman dan distorsi lainnya. Oleh sebab itu meoda ASK hanya menguntungkan bila dipakai untuk hubungan jarak dekat saja.
Dalam hal ini faktor derau harus diperhitungkan dengan teliti, seperti juga pada sistem modulasi AM. Derau menindih puncak bentuk-bentuk gelombang yang berlevel banyak dan membuat mereka sukar mendeteksi dengan tepat menjadi level ambangnya.
2. Frequncy Shift Keying
Frequency Shift Keying (FSK) atau pengiriman sinyal melalui penggeseran frekuensi. Metoda ini merupakan suatu bentuk modulasi yang memungkinkan gelombang modulasi menggeser frekuensi output gelombang pembawa. Pergeseran ini terjadi antara harga-harga yang telah ditentukan semula dengan gelombang output ang tidak mempunyai fasa terputus-putus.
Dalam proses modulasi ini besarnya frekuensi gelombang pembawa berubah-ubah sesuai dengan perubahan ada atau tidak adanya sinyal informasi digital.
FSK merupakan metode modulasi yang paling populer. Dalam proses ini gelombang pembawa digeser ke atas dan ke bawah untuk memperoleh bit 1 dan bit 0. Kondisi ini masing-masing disebut space dan mark. Keduanya merupakan standar transmisi data yang sesuai dengan rekomendasi CCITT.
FSK juga tidak tergantung pada teknik on-off pemancar, seperti yang telah ditentukan sejak semula. Kehadiran gelombang pembawa dideteksi untuk menunjukkan bahwa pemancar telah siap.
Dalam hal penggunaan banyak pemancar (multi transmitter), masing-masingnya dapat dikenal dengan frekuensinya. Prinsip pendeteksian gelombang pembawa umumnya dipakai untuk mendeteksi kegagalan sistem bekerja.
Bentuk dari modulated Carrier FSK mirip dengan hasil modulasi FM. Secara konsep, modulasi FSK adalah modulasi FM, hanya disini tidak ada bermacam-macam variasi /deviasi ataupun frekuensi, yang ada hanya 2 kemungkinan saja, yaitu More atau Less (High atau Low, Mark atau Space). Tentunya untuk deteksi (pengambilan kembali dari kandungan Carrier atau proses demodulasinya) akan lebih mudah, kemungkinan kesalahan (error rate) sangat minim/kecil.
Umumnya tipe modulasi FSK dipergunakan untuk komunikasi data dengan Bit Rate (kecepatan transmisi) yang relative rendah, seperti untuk Telex dan Modem-Data dengan bit rate yang tidak lebih dari 2400 bps (2.4 kbps).
3. Phase Shift Keying
Phase Shift Keying (PSK) atau pengiriman sinyal melalui pergeseran fasa. Metoda ini merupakan suatu bentuk modulasi fasa yang memungkinkan fungsi pemodulasi fasa gelombang termodulasi di antara nilai-nilai diskrit yang telah ditetapkan sebelumnya. Dalam proses modulasi ini fasa dari frekuensi gelombang pembawa berubah-ubah sesuai denganperubahan status sinyal informasi digital.
Sudut fasa harus mempunyai acuan kepada pemancar dan penerima. Akibatnya, sangat diperlukan stabilitas frekuensi pada pesawat penerima.
Guna memudahkan untuk memperoleh stabilitas pada penerima, kadang-kadang dipakai suatu teknik yang koheren dengan PSK yang berbeda-beda. Hubungan antara dua sudut fasa yang dikirim digunakan untuk memelihara stabilitas. Dalam keadaan seperti ini , fasa yang ada dapat dideteksi bila fasa sebelumnya telah diketahui. Hasil dari perbandingan ini dipakai sebagai patokan (referensi).
Untuk transmisi Data atau sinyal Digital dengan kecepatan tinggi, lebih efisien dipilih system modulasi PSK. Dua jenis modulasi PSK yang sering kita jumpai yaitu :
3.1. BPSK
BPSK adalah format yang paling sederhana dari PSK. Menggunakan dua yang tahap yang dipisahkan sebesar 180° dan sering juga disebut 2-PSK. Modulasi ini paling sempurna dari semua bentuk modulasi PSK. Akan tetapi bentuk modulasi ini hanya mampu memodulasi 1 bit/simbol dan dengan demikian maka modulasi ini tidak cocok untuk aplikasi data-rate yang tinggi dimana bandwidthnya dibatasi.
3.2. QPSK
Kadang-Kadang dikenal sebagai quarternary atau quadriphase PSK atau 4-PSK, QPSK menggunakan empat titik pada diagram konstilasi, terletak di sekitar suatu lingkaran. Dengan empat tahap, QPSK dapat mendekode dua bit per simbol. Hal ini berarti dua kali dari BPSK. Analisa menunjukkan bahwa ini mungkin digunakan untuk menggandakan data rate jika dibandingkan dengan sistem BPSK. Walaupun QPSK dapat dipandang sebagai sebagai suatu modulasi quaternary, lebih mudah untuk melihatnya sebagai dua quadrature carriers yang termodulasi tersendiri. Dengan penafsiran ini, maka bit yang digunakan untuk mengatur komponen phase pada sinyal carrier ketika digunakan untuk mengatur komponen quadrature-phase dari sinyal carrier tersebut. BPSK digunakan pada kedua carrier dan dapat dimodulasi dengan bebas.
Propagasi Gelombang Radio

Frekuensi gelombang radio yang mungkin dapat dipantulkan kembali adalah frekuensi yang berada pada range Medium Frequency (MF) dan High Frequency (HF). Adapun gelombang radio pada Very High Frequency (VHF) dan Ultra High Frequency (UHF) atau yang lebih tinggi, secara praktis
dapat dikatakan tidak dipantulkan oleh ionosphere akan tetapi hanya sedikit dibiaskan dan terus laju menghilang ke angkasa luar. Gelobang radio yang menghilang ke angkasa luar tadi dalam istilah propagasi dikatakan SKIP.









Dalam istilah propagasi, pantulan yang hanya sekali bolak balik dinamakan single hop dan
yang berkali-kali dinamakan multiple hop. Sudah barang tentu dalam perjalanannya, gelobang radio akan mengalami pengurangan kekuatannya dan juga efisiensi setiap kali pantulan akan mengurangi pula kekuatan gelombang radio sehingga pancaran dengan multi hop akan lebih lemah dibanding
Makin tinggi frekuensi gelombang radio, dapat dikatakan secara praktis makin sulit dipantulkan oleh ionosphere. Untuk gelombang yang cukup rendah misalnya pada band 160 meter, gelombang yang dipancarkan hampir tegak lurus ke atas dapat dipantulkan balik ke bumi.


Dengan sudut pantul yang hampir tegak lurus tersebut, jarak capai kembali ke bumi relatif sangat dekat (untuk sngle hop). Untuk mencapai jarak yang jauh diperlukan multiple hop, dan sudah barang tentu kekuatanya menjadi lemah, sihingga untuk mencapai jarak yang cukup jauh pada band tersebut atau band-band rendah yang lain diperlukan daya pancar pesawat yang relatif lebih besar.
Makin tinggi frekuensi gelobang radio, agar dapat dipantulkan oleh ionosphere diperlukan sudut yang makin kecil. Dengan sudut pantul yang kecil tersebut jarak capai pantulannya ke bumi
makin jauh. Pada Very High Frequency sudut pantul yang diperlukan sangat kecil sehingga secara praktis tidak mungkin dilakukan. Kita telah rasakan bersama bahwa apabila kita bekerja pada band 10 meter, dengan daya pancar yang relatif kecil, misalnya 5 Watt sudah dapat mencapai benua Amerika dan benua Eropa.











Agar kita mendapatkan sudut pancaran yang efektif untuk setiap band frekuensi, diperlukan pemilihan jenis antena yang tepat. Setiap jenis antena cenderung mempunyai pola radiasi yang berbeda dan dengan mempelajari berbagai pola radiasi dari berbagai jenis antena, kita dapat memperoleh jenis antena yang tepat untuk band-band tertentu.
Dengan sifat gelombang MF dan HF seperti telah diuraikan tadi, maka untuk keperluan komuniksi jarak jauh kita cenderung menggunakan high frequency.
Karena gelombang radio pada high frequency dapat mencapai jarak yang jauh dengan hanya mengharapkan bantuan dari benda-benda alam yang ada disekeliling bumi atau dikatakan pancaran
secara teresterial.
Dengan dikembangkannya satelit komunikasi radio yang dapat bertidak sebagai repeater atau pancar ulang, maka teknologi ini memberikan era baru dalam propagasi radio, ialah dengan dimungkinkannya pancaran pada band-band frekuensi di atas HF untuk mencapai jarak jauh.
Oleh karena secara praktis gelombang radio pada range di atas HF tidak dipantulkan oleh ionosphere, maka ia dapat menembus angkasa luar dengan efisien dan mencapai satelit dengan baik.














Propagasi Gelombang Tanah
—- Gelombang Langsung
—- Gelombang Pantulan Tanah











Gelombang Permukaan Tanah













Ionosphere yang menyelimuti bumi kita ini dapat terdiri atas beberapa lapis, antara lain yang disebut lapisan D, E dan lapisan F. Lapisan D adalah lapisan yang paling rendah, sedangkan E adalah lapisan di atasnya dan disusul dengan lapisan F yang merupakan lapisan teratas. Tinggi lapisan F adalah sekitar 280 kilometer sedangkan lapisan E sekitar 100 kilometer diatas permukaan bumi.
Pada siang hari lapisan F terpecah menjadi dua ialah F1 dan F2 masing-masing mempunyai ketinggian sekitar 225 kilomter dan 320 kilometer. Sedangkan pada malam hari kedua lapisan tersebut bergabung lagi menjadi satu lapisan tunggal ialah lapisan F. Lapisan F inilah yang mempunyai arti penting dalam pancaran gelombng radio teresterial, dimana komunikasi jarak jauh bersandar kepada kondisi lapisan ini.

Kesempurnaan pemantulan yang dilakukan oleh lapisan ionosphere cenderang tergantung kepada kesempurnaan ionisasi dari lapisan tersebut. Lapisan ionosphere yang terion secara sempurna merupakan lapisan yang masif dan mempunyai daya pantul cukup baik pada gelombang radio. Kondisi
propagasi pada malam hari dalam keadaan normal sehari-hari pada umumnya cenderung lebih baik daripada sianghari. Hal ini disebabkan karena pada siang hari terjadi terjadi lapisan ionosphere tambahan (lapisan D) yang terionisasi kurang sempurna sehingga menghambat pantulan gelombang radio kembali ke bumi.